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ABSTRACT

A two-dimensional, compressible Navier-Stokes

equations with a k - e turbulence model are solved

numerically to simulate the flows of compressible free

shear layers. The appropriate form of k and e equations

for compressible flows are discussed. Sarkar's modelling

is adopted to simulate the compressibility effects in the

k and e equations. The numerical results show that the

the spreading rate of the shear layers decreases with

increasing convective Math number. In addition, fa-

vorable comparison was found between the calculated

results and Goebel and Dutton's experimental data.

INTRODUCTION

Recent national interest in trans-atmospheric ve-

hicle has rekindled the hypersonic research. For this

vehicle, a supersonic combustion ramjet (scramjet) en-

gine was proposed to provide the power. Inside this

scramjet engine, compressible mixing layers are impor-

tant phenomena. The performance of the engine will

depend on the supersonic mixing and the flame holding

of shear layers.

The behavior of incompressible mixing layers has

been studied extensively. However, additional study

is required to understand the compressibility effects of

free shear layers at high speeds. Figure i shows a sketch

of a typical free shear layer. Two streams at different

temperatures, densities, and Math numbers merge to-

gether to form a free shear layer. Various combinations

of flow conditions of high-speed streams and low-speed

streams allow for the systematic study

* Research Engineer, Member AIAA.

t Aerospace Engineer, Member AIAA.

$ Senior Research Scientist.

of compressible shear layers. In this paper, we report

the incorporation of a k - • model with compressibility

effects to a two-dimensional flow equations solver for

the simulation of compressible shear layers. First. we

point out the derivation procedure of the compressible

k and e equations. Unlike the procedure in the incom-

pressible equations, both Favre and Reynolds averaging

procedures I are performed in deriving the flow and tur-

bulence equations. Particularly, the additional terms in

the Navier-Stokes equations due to the averaging pro-

cedure are illustrated. These terms are often omitted

in CFD practices. The k and e equations are presented

in vector form for the convenience of illustrating the

numerical method.

The lower-upper (LU) scheme developed by Yoon

and Jameson 2 is adopted in this work. This method has

proven very efficient for large systems of equations. 3 For

completeness, a brief account of the numerical method

is presented in this paper. The newly developed solver

then is applied to simulate compressible free shear lay-

ers with five different convective Math numbers from

0.05 to 1.48. One of five test conditions is a replica

of that reported by Goebel and Dutton: The most

important feature of the compressible free shear lay-

ers one want to demonstrate in the calculations is the

decrease of the shear layer thickness with increasing

Math number, s Favorable comparison were found be-

tween the experimental data and the calculated results.

THEORETICAL MODEL

In deriving the compressible flow equations of fully

turbulent flows, all the flow properties are Favre arer-

aged (mass weighted averaged) except the density, p,

and pressure, p. The definition of the Favre average is

= ¢-7/_. (l)
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where¢ is any flow property Thus flow variables are

decomposed in the following fashion,

= 8 + ¢". (2)

On the other hand, conventional Reynolds' average are

used for the pressure and the density. According to

the definition of Favre averaging, the following relations

exist:

#¢'

:¢" = 0, (3)

¢'=0.

In doing so, all the terms associated with the density

fluctuation, e.g., p'u', in the Reynolds' averaged equa-

tions were eliminated in the Favre's averaged equations.

The resulting flow equations are much simpler com-

pared to the equations derived by the Reynolds aver-

aging procedures.

Written in a strong conservative form, the turbu-

lent, compressible, flow equations, can be expressed as

follows:

0Q O (E-E,)+ O (F-Fv)=H.
0--/-+ _ W (4)

Here z and y are Cartesian coordinates, Q is the depen-

dent variable, E and F are the convective flux vectors

and Ig, and Fv are the viscous flux vectors. The equa-

tions are similar to the laminar equations. However,

all variables in the equations are the averaged vari-

ables, and the transport properties are the effective,

i.e., laminar plus turbulent, properties. Here, we want

to point out that the viscosity multiplied by the dilata-

tional terms in the normal stresses is still the laminar

viscosity as illustrated in the following relations:

(00
0,  (0000)r.y=2(.+.,)_-_. _+_v "

(s)

The vector H on the right hand side of the flow

equations, Eq. 4, represents the additional terms intro-

duced by the averaging procedure. The vector H can

be expressed as

H 0 )3 8=

_2o__
3 8,

[ [  ,o,1_: O'+ o.,o,j + o,
(6)

where k is the turbulent kinetic energy and is defined

as

_----_p(u" u"k = + o'v"), (7)

G is tile generation of the turbulent kinetic energy and

is defined in the following section.

The equations of turbulent kinetic energy, k, and

energy dissipation rate, e, are derived by the manipula-

tion of the flow equations and the averaging procedure.

The derived equations of k and e can not be solved di-

rectly due to the closure problem. Modelling of certain

terms in the equations is necessary to make the govern-

ing equations well posed. The details of the modelling

is beyond the scope of this work. Here, only the final

form of the equations are presented. The k and e equa-

tions in the Cartesian coordinate system can be cast

into the vector form: .

OEk_ bFk_ 0E_k, OF_k_

OQk-----_+--_-z + Ov- Ox +--_v +s' (8)oqt

where

Q_, = _ ,

E_ k 7_c '

F_ \ _e '

1to. t(.+"')_'o.

S = _, (C_G- C_-_e)f ]' (9)

where (7 is the generation term of the turbulent kinetic

energy and can be expressed as:

1to_ +o_,) _o_j -5 _ _ (io)

where the subscripts i, j, and k follows the convention

of Cartesian tensor.

The eddy viscosity/_, is derived in terms of appro-

priate length and velocity scales. For the k - e turbu-

lence model, the length scale and the velocity scale of

turbulent fluctuations are taken as

k3I 2
_._ --,

(ll)

u"i _ k ll_.
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These relations allow the eddy viscosity, pt, to be mod-
elled as:

k_
t,, ---c._--. (12)

The constants used in the k - _ model are the standard

Jones and Launder's values: e Cp = 0.09, C1 = 1.44,
(72 = 1.92, _k = 1.0, and a_ = 1.3. These constants
were never altered during the course of this work.

In order to accommodate the compressibility ef-

fect, the dissipation term _e in the source term of the k
equation is multiplied by a correction factor (1 +aM_).
Here M_ is the local turbulence Mach number defined

as Mt = vf'k/a where a is the local speed of sound. The
constant a in the term is taken as unity. This model
is developed by Sarkar et alJ The physical meaning of

the term is that for high turbulence Mach number (Mr)
flows, the dissipation of the turbulence kinetic energy
is enhanced by a factor of crM_. For free shear layers at

high convective Mach number, the turbulence intensity
is greatly reduced due to compressibility.

In calculating the turbulent free shear layers, the
inlet boundary conditions for mean velocities-and tem-
perature are specified based on the hyperbolic tangent

profile with specified initial shear layer thickness. The
hyperbolic tangent profile is an approximation of the
self-similar solution for fully developed turbulent free

shear layers. The inlet transverse velocities are set to
be zero. The turbulent kinetic energy and dissipation
are specified according to the local equilibrium assump-
tion and a algebraic turbulence model: s

-.2 8a (13)
I.lt "- pirn

where lm : 0.125b and the shear layer thickness, b, is
based on the distance between the two transverse lo-

cations where fi = fil - 0.1Aft and fi = fi2 + 0.1Aft.
The dissipation can be related to the local length scale

which is specified based on the local shear layer thick-
hess:

_ k_a

e = C,-_-- (14)

where Cc = 1.23. Using Eqs. (13) and (14), and the
equation for the eddy viscosity, i.e, Eq. (12), k and

can be readily obtained for the upstream boundary
conditions.

Numerical Method

The numerical solution of Eqs. (4) and (8) is
performed in a general, body-fitted coordinate system,

(_, 7). For the purpose of discussion, we wiU concen-

trate on Eq. (4). However, the procedure is equally

applicable to Eq.
Eq. (4) results in:

OQ a /E
o---;-+ N t

where

(8). Coordinate transformation of

0Eo)+ 

Q=hQ

fe = h(r/,E + %F)

I_ : h(_=E_ -t- _yFv)

_'_ = h(,.E. + _F.)

I2I : hH

(15)

(16)

in which h is the cell volume.

The transformed equation, Eq. (15), is solved us-
ing a time-marching, LU scheme. The LU scheme can
be obtained by approximately factorizing the left-hand-

side (LItS) of the equation. In time-marching form, the
implicit upwind difference scheme of Eq. (15) can be
written as

[I+ At(D_-/k- + D+t3 - - D+
(17)

D_A + + D;t3+)IAQ = AtRHS"

In Eq. (17), At is the time-step• Backward-difference

operators are denoted by D_- and D_', and forward-

difference operators by D_- and D +. The flux Jaco-

blahs, A+, 13+, ._-, and 13- are constructed such that

the eigenvMues of '+' matrices are nonnegative and
those of '-' matrices are nonpositive. The matrix
is the Jacobian matrix of the source term.

The LHS matrix of Eq. (21) is usually too large for
direct inversion. An approxirnate-factorization proce-

dure is implemented which results in the following LU
scheme :

,',t . + ___(g+ _ B_) _(K_(A + - A-) D)-'

= 'Mit

(Is)
where the grid spacing in the general coordinate,
and At/ are usually taken to be one. tt represents the
residual of each LU time marching step. In calculating

the residual, R, both the inviscid and viscous terms are
discretized using the central-difference approach:

It = Df(E. - F,) + Dq(P_ - F) + fl (19)
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where De and D, are the central difference operators.

Equation (18) is the generic form for the LU

scheme. Its derivation can be found in Ref. 3 and

will not be repeated here. This LU scheme requires

inversion of the matrix,

for the L operator and

for the U operator.

Up to this point, no definition has been made to

the exact form of the split flux Jacobians. Yoon and

Jameson 2 proposed that the split flux Jacobians are
defined as

k + = 0.5(A + 7k I)

k- = o.5(k - vxI)
(22)

fi+ = o.5(I_ + v_I)

13- = 0.5(I}- 7BI)

where 7k and 7B are greater than the spectral radii of
the associated flux Jacobians :

"rx_>max(IAxl)
"rB _>m_(l;_l) (23)

The purpose of constructing split flux-Jacobians by Eq.

(22) is to make the matrices in Eqs. (20) and (21) diag-

onal for efficient inversion. Apparently, the eigenvalues

of the split flux-Jaeobians are not the characteristics

speeds of the flow.

In solving the k and e equations, the aforemen-

tioned numerical method, i.e., the LU scheme on the

left hand side and central differencing on the right hand

side, is used. The solution procedure of the whole equa-
tion set is decoupled into flow solver and turbulence

solver. Thus, the turbulence solver stands alone and

can be easily turned on or off. This arrangement does

not affect the overall numerical stability due to the fact

that the feedback from k and e equations to the flow

equations depends on the turbulent transport proper-

ties only. Thus, it is more efficient and convenient to

separate the solution procedure into two parts.

The source terms of the k and e equations demand

special treatment. In linearizing the source terms for

the numerical method, the Jacobian matrix is obtained

through the derivative of the source terms with respect

to the dependent variables, i.e., _k and _e. Following

the usual practice, the form of the source terms guar-

antee a 2 x 2 full matrix for the Jacobian matrix. How-

ever, special treatment in deriving the Jacobian matrix

is applied in this work to enhance tile numerical stabil-

ity. In the k equation, ¢ has been replaced by k(e/k)

where elk is treated as a constant. A similar method is

also applied to the source term of the ¢ equation. The

Jacobian matrix obtained is:

Note that off-diagonal terms are eliminated and the di-

agonal terms are always negative. Thus, the implicit

part of the source terms of k and ( equations behaves

like a sink which always stabilize the numerical scheme.

Results and Discussions

Bogdanoff 5 introduced the convective Mach num-

ber as a parameter that collapses the growth rate date

of plane shear layers. The convective Mach number is

defined as

UI - U, Uc - U2
Mc - (28)

C1 C2

where U1 and Us are the freestream velocities, and ci

and c2 are the freestream sound speeds. Uc is the con-

vective velocity of large structures and is defined as

Ulc2 + U2cl
U= - (29)

cl + c_

Table 1 shows the five test conditions of the simulated

compressible free shear layers. The range of the convec-

tive Mach numbers, Me, is from 0.05 to 1.48. The last

two rows show the spreading rate and the ratio of the

compressible spreading rate to incompressible spread-

ing rate in which 6 is the shear layer thickness and the

superscript ' represents the derivative of 6 with respect

to the streamwise distance. As indicated in the last

row of the table, the ratios of the spreading rate of

the free shear layers decreases as the convective Mach

number increases. The test conditions of Case 3 in the

table are the same as in the experiments reported by

Goebel and Dutton. 4 In the rest of the section, we will

first show the direct comparison between the simulated

results and the experimental data for Case 3. Then,

detailed numerical solutions of Case 3 in terms of ve-

locity, turbulent kinetic energy, turbulence dissipation

rate, Reynolds stress, and eddy viscosity are presented

in a coalesced fashion. Finally, the solutions of five

cases are compared to each other in the figures of ki-

netic energy, Reynolds stress, and ratio of spreading
rates.

The solutions of Case 3 are examined in detail.

Figure 2 shows the development of the free shear layer.
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Notethatx andy axesarenotona 1:1ratioforthe
convenienceofillustration.Thedefinitionoftheshear
layerboundariesis thesamethatof theshearlayer
thickness.In Fig.2,theboundariesof theshearlayer
correspondingto 10- 90% are drawn. Circles are the

experimental data of Dutton et al. The calculated re-

sults agree well with the experimental data. After the

developing region, the boundary of the shear layer is

almost linear. Incidentally, Figs. 3a and 3b show the

numerical convergence trends of the flow and k -

equations. In about 2500 iterations, the residuals drop

about 12 orders of magnitude and reach the machine

accuracy.

Figure 4 shows the Mach number profile at various

axial locations. The velocity gradient in the transverse

direction decreases as the flow goes downstream. Figure

5 is the coalesced version of Fig. 4. The nondimension-

alized y coordinate defined as (y- yc)/_ is used, where

yc is the transverse location at the center of the shear

layer, and _ is the shear layer thickness. Note that the

upstream boundary condition of velocities is prescribed

according to a hyperbolic tangent curve which is an ap-

proximation of self-similar solution of free shear layers.

According to Fig. 5, this self similarity of velocity pro-

files never fail as the flow goes downstream.

Figure 6 shows coalesced turbulence kinetic ener-

gies at various locations. The turbulence kinetic en-

ergy is nondimensionalized by AU 2. This figure clearly

shows that after the first three stations, i.e., about 150

mm, the turbulence kinetic energy retains self similar-

ity. Thus, the developing region for the turbulence is

about 150 mm. Figure 7 shows the turbulence dissipa-

tion profiles. As flow goes downstream, the peak values

of turbulence dissipation at each stations decrease, and

the turbulence dissipation never reach a fully developed

condition. However, if the e value is nondimensional-

ized by AU3/_f the coalesced profiles appear as shown

in Fig. 7. A similar behavior is observed for the eddy

viscosity profiles (Fig. 8). Figure 9 shows the nondi-

mensionalized Reynolds stress profiles. Again, the tur-

bulence Reynolds stress becomes the fully developed at

about 150 mm downstream of the splitter plate.

Figure 10 shows the comparison between the pre-

dicted fully developed Reynolds stress and the experi-

mental data reported by Dutton et al. s The predicted

solution underestimated the peak value of the Reynolds

stress profile by 6 _ 8%; however, the overall trend

of the predicted results is correct. Many factors con-

tribute to the discrepancy between the predicted result

and experimental data. Among them, the upstream

boundary conditions are simplified in the solution pro-

cedure, i.e., no effort was made to simulate two bound-

ary layers merging at the tip of the splitter plate. This

could offset the solution in the developing region and

shift the fully developed solutions.

Figure 11 shows the comparison of the turbulent

kinetic energy between the five cases. Again, the turbu-

lent kinetic energy is normalized by the square of the ve-

locity difference of the two streams. It is clear that the

normalized turbulence intensity decreases with increas-

ing convective Mach number. A similar situation is

observed in Fig. 12, the normalized Reynolds stress de-

creases with increasing convective Mach number. Fig-

ure 13 shows the distribution of the ratios of spread-

ing rates for the five cases compared to experimental

data. The ratio of the spreading rates decreases from

about unity to 0.45 as the convective mach number in-

creases from about 0. to 1.45. Both the experimental

data and the simulated results show the spreading rate

ratio reaches an asymptotic value after the convective

roach number exceeds unity. Simular phenomenon can

be seen in Figs. 11 and 12. Both figures show that

the normalized turbulence kinetic energy and Reynolds

stress reach asymptotic values as the convective Mach

number increases.

CONCLUDING REMARKS

In this paper, we report the incorporation of a com-

pressible k.- e model with a two-dimensional Navier

Stokes solver to study compressible free shear layers.

Sarkar's modelling is adopted to simulate the compress-

ibility effects of the k and e equations. The model en-

hances the turbulence dissipation rate of flows at high

speeds. In deriving the governing equations, the Favre

averaging procedure for the fully trubulent flow equa-

tions is elaborated. The equation sets are presented in

the vector form for the convenience of the discussion of

the numerical method. Yoon and Jameson's LU scheme

is used to solve the equation sets. Details of boundary

conditions and the treatment of the source terms of the

k and _ equations are discussed. Then the program is

applied to simulate compressible free shear layers with

five different convective Mach numbers. The decrease

of the spreading rate of the shear layers with increasing

Mach number is observed in the calculated results. Re-

sults also show favorable comparison with Goebel and

Dutton's experimental data.
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Fig. 1: Schematic of free shear layer.

CASE

i

MI,M2I

Me

UI,U 2

[m]

P [atm]

/5'

Table 1: Test, conditions of the calculated shear layer.

1 2 3 4 5

1.2, 1.1 2.0, 1.4 1.91, 1.37 2.5, 1.1 6.1, 3.15

0.05 0.31 0.45 0.70 1.48

419,384 676,465 702,404 865,380 3461,1786

300,300 275,275 334,215 295,295 800,800

0.64,0.6z 0.7,0.7 0.57,0.89 0.64,0.64 0.24,0.24

0.55 0.55 0.55 0.55 0.55

0.007 0.021 0.027 0.035 0.024

1.01 0.7 0.54 0.47 0.40
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Fig. 2: The boundaries of the free shear layer (10--90%).
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Fig. 4: The velocity profiles of the free shear layer at dig-
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Fig. a: Convergence trends of the flow and turbulence

equations.
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